TESCAN MIRA3 FEGSEM

Applications

Materials Science and Geological Sciences

  • Surface imaging (topology, chemistry, phase contrast)
  • Orientation imaging (automated large scale, image stitching)

Contact

Haiping Sun
Location: Room G021

Acknowledgments

Publications, presentations, and posters resulting from work on this instrument should state: “The authors acknowledge financial support from the University of Michigan College of Engineering and technical support from the Michigan Center for Materials Characterization.

Specifications

  • Accelerating Voltage 0-30kV
  • Filament: Schottky Field Emitter
  • Detectors
    • Secondary Electron Imaging – Everhart-Thornley Detector (ETD)
    • Backscattered Electron Detector (WD > 8mm) 
    • EDS (WD = 15mm) – EDAX
    • EBSD (WD= 10-20mm) – EDAX Hikari Camera
  • SEM Resolution: 1.2nm
  • Imaging mode
    • Resolution Mode (WD = 5-10mm): high resolution and low depth of focus
    • Depth Mode: good resolution and increased depth of focus
    • Field Mode: large field of view, high depth of focus but worse resolution
    • Wide Field Mode (WD >25mm): extra large field of view but focus is not accurate
  • GM Chamber and Sample Stage
    • Internal Diameter: 340mm (width) x 315mm (depth)
    • Maximum Specimen Height: 145mm without rotation stage; 116 with rotation stage
    • Maximum Specimen Weight: up to 8kg
    • Movement: x,y: +/- 65mm,; z: 0 to 100mm. 100mm is where the stage is all the way down; Tilt +/- 90 degree
  • Vacuum: Sputter Ion Pump for FEG and Molecular Drag Pump for chamber and column
  • PC and Software
    • SEM PC
      • MIRA3 Control Software
    • EDAX PC
      • TEAM for EDS and EBSD
      • OIM Analysis is on EDAX PC for EBSD data analysis
  • Sample Requirements
    • Not for magnet materials, especially powder samples.
    • Samples must be compatible with high vacuum, i.e., clean and dry. Samples should be handled with tweezers or gloves.
    • Samples need to be conductive and connected to ground (that is the stage); if not, the surface should be coated with a conductive layer, such as Au or Carbon, then apply a conductive tape, Copper or Carbon tape, connected to the SEM stub. The stub should be tightened by screw.

References and Publications

  1. Solar Water Oxidation by an InGaN Nanowire Photoanode with a Bandgap of 1.7 eV, S. Chu, S. Vanka, Y. Wang, J. Gim, Y. Wang, Y. Ra, R. Hovden, H. Guo, I. Shih, and Z. Mi, ACS Energy Letters, 3, 307-314, 2018
  2. Grain size effects on NiTi shape memory alloy fatigue crack growth, W LePage, A Ahadi, W Lenthe, QP Sun, T Pollock, J Shaw, S Daly, Journal of Materials Research, 33(2), 91-107, 2018
  3. Deformation behavior of β’ and β”’ precipitates in Mg-RE alloys, ELS Solomon, EA Marquis, Materials Letters (2017)