JEOL 2010F Analytical Electron Microscope

Applications

  • STEM imaging
  • Chemical mapping
  • In-situ imaging

Contact

Haiping Sun
Location: Room G020

Acknowledgments

Publications, presentations, and posters resulting from work on this instrument should state: “The authors acknowledge the financial support of the University of Michigan College of Engineering and NSF grant #DMR-9871177, and technical support from the Michigan Center for Materials Characterization.

Specifications

  • Accelerating Voltage: 0 to 200 kV (50 V steps)
  • Filament: Zirconated Tungsten (100) thermal field emission tip
  • Vacuum: ~1.5 x10-7 torr
  • Resolution
    • CTEM 0.10 nm lattice / 0.25 nm point-to-point
    • STEM 0.17 nm HAADF (high angle annular dark field)
  • XEDS System
    • Horizontal Ultra-thin Window Si-Li X-ray detector (active area = 30 mm2) capable of detecting elements with Z >5.
    • EDAX r-TEM Detector with EDAX acquisition software
  • EELS System
    • Gatan Imaging Filter (GIF) for electron energy loss spectroscopy and imaging.
  • Image Acquisition & Analysis System
    • Gatan #794 cooled multi-scan CCD TV camera for high resolution imaging (above the GIF)
    • Gatan #692 Retractable TV rate CCD TV camera.
  • Sample Holders
    • JEOL Single-Tilt Stage
    • JEOL Double-Tilt Analytical Stage
    • Gatan #646 Double-Tilt (x=±35 degrees, y=±35 degrees) Low Background (Be) Stage with Faraday cup.
    • Gatan #636 Double-Tilt (x=±35 degrees, y=±35 degrees) Low Background (Be) Liquid-Nitrogen Stage.
    • Gatan #652 Double-Tilt Heating Holder with a maximum operating temperature of 1000 degrees Celsius.
  • Other Accessories
    • Free lens control, fully independent control of all lenses.
    • FasTEM remote NT server based control system.

References and Publications

  1. He+ irradiation induced cracking and exfoliating on the surface of Ti3AlC2 H.H. Shen, F.Z. Li, H.B. Zhang, S.M. Peng, K. Sun, X.T. Zu and, L. Ao. Journal of Nuclear Materials  485, 262-272, 2017
  2. Indium-doped Co3O4 nanorods for catalytic oxidation of CO and C3H6 towards diesel exhaust    L. Ma, C.Y. Seo, X.Y. Chen, K. Sun, J.W. Schwank, Applied Catalysis B-Environmental, 222, 44-58, 2017
  3. The Co-evolution of Microstructure Features in Self-Ion Irradiated HT9 at Very High Damage Levels, E. Getto, G. Vancoevering, G.S. Was. Journal of Nuclear Materials  484, 193-208, 2017
  4. Biomimetic hierarchical assembly of helical supraparticles from chiral nanoparticles. Y.L. Zhou, R.L. Marson, G. van Anders, J. Zhu, G. Ma, P. Ercius, K. Sun, B. Yeom, S.C. Glotzer, and N.A. Kotov, ACS Nano, 10(3) 3248-3256, 2016
  5. Optical anisotropy and sign reversal in layer-by-layer assembled films from chiral nanoparticles, Z. Liang, K. Bernardino, J. Han, Y. Zhou, K. Sun, A.F. de Moura, N.A. Kotov      Faraday Discussions, 191, 141-157, 2016
  6. Direct observation of hydrogenation and dehydrogenation of a zirconium alloy. H.H. Shen, X.T. Zu, B. Chen, C.Q. Huang and K. Sun. Journal of Alloys and Compounds, 659, 23-30, 2016
  7. Void Swelling and Microstructure Evolution at Very High Damage Levels in Self-Ion Irradiated Ferritic-Martensitic Steels, E. Getto, K. Sun, A.M. Monterrosa, Z. Jiao, M.J. Hackett, G.S. Was, Journal of Nuclear Materials  480, 159-176, 2016
  8. Methodology for Determining Void Swelling at Very High Damage under Ion Irradiation  E. Getto, K. Sun, S. Taller, A.M. Monterrosa, Z. Jiao, G.S. Was, Journal of Nuclear Materials  477, 273-279, 2016
  9. J.C. Canniff, S. Jeon, and R.S. Goldman, “Formation and Growth of Near-Surface Ga Nanoparticles on SiNx”,  Appl. Phys. Lett.,106, 243102 (2015).
  10. Exposing the sub-surface of historical daguerreotypes and the effects of sulfur-induced corrosion, EA Marquis, Y Chen, J Kohanek, Y Dong, S Centeno, Corrosion Science (2015) 94 438-444 link
  11. Linking the Microstructure of a Heat-Treated WE43 Mg Alloy with its Corrosion Behavior, P-W Chou, EA Marquis, Corrosion Science (2015) 101 94-104 link
  12. Bielinski, A. R.; Kazyak, E.; Schlepütz, C. M.; Jung, H. J.; Wood, K. N.; Dasgupta, N. P. Hierarchical ZnO Nanowire Growth with Tunable Orientations on Versatile Substrates Using Atomic Layer Deposition Seeding. Chem. Mater. 2015, 27 (13), 4799–4807
  13. M. Kang, J. H. Wu, W. Ye, Y. Jiang, E. A. Robb, C. Chen, and R. S. Goldman, “Formation and evolution of ripples on ion-irradiated semiconductor surfaces”, Appl. Phys. Lett. 104, 052103 (2014).
  14. D.Q. McNerny, B. Viswanath, D. Copic, F.R. Laye, C. Prohoda, A.C. Brieland-Shoultz, E.S. Polsen, N.T. Dee, V.S. Veerasamy, A.J. Hart. Direct fabrication of graphene on SiO2 enabled by thin film stress engineering. Scientific Reports 4 (2014) 5049.
  15. P. Wharry, G. S. Was, “The Mechanism of Radiation-Induced Segregation in Ferritic-Martensitic Alloys,” Acta Mater. 65 (2014) 42-55.