Hysitron TriboIndenter


Materials Science, Life Sciences, and Geological Sciences


Haiping Sun


Room G030 


Publications, presentations, and posters resulting from work on this instrument should state: “The authors acknowledge the financial support of the University of Michigan College of Engineering and technical support from the Michigan Center for Materials Characterization.”


  • Available Testing Modes
    • Quasistatic nanoindentation
      • Measure Young’s modulus, hardness, fracture toughness and other mechanical properties via nanoindentation.
        • Duel Head Load range: from ≤30 nN to 10 N
    • 2D Scratch testing
      • Quantify scratch resistance, critical delamination forces, and friction coefficients with simultaneous normal and lateral force and displacement monitoring.
    • nanoDMA®
      • Investigate time-dependent properties of materials using a dynamic testing technique designed specifically for polymers and biomaterials.
    • Modulus Mapping™
      • Obtain quantitative maps of the storage and loss stiffness and moduli from a single SPM scan.
    • nanoECR®
      • Conductive nanoindentation system capable of providing simultaneous in-situ electrical and mechanical measurements for investigating material deformation and stress induced transformation behavior.
    • In-situ SPM Imaging with Closed-Loop Scanner
      • Scan range (100 μm × 100 μm × 15 μm
      • Positioning Resolution: +/-10 nm
      • Imaging Contact force < 70nN
    • MEMS-based xProbe
      • Provide quantitative nanomechanical measurement of thin films, soft materials, surface interaction forces and low contact force SPM imaging, with high seysensitivity at small scale.
  • Standard Transducers
    • DMA  
      • Load <10mN; Displacement <5um
      • Dynamic Force Amplitude <5mN
      • Dynamic Displacement Amplitude < 2.5um
      • Frequency: 0.1Hz to 300Hz
      • Data Acquisition Rate: <38kHz
    • ECR  
      • Load <10mN; Displacement <5um
    • 2D     
      • Quasistatic indentation: Load <10mN; Displacement <5um
      • nanoScratch test: Load <2mN; Displacement< 15um
    • Load
      • Resolution: <1 nN
      • Noise Floor: <30 nN
      • Imaging Contact force < 70nN
    • Displacement
      • Resolution: <0.02 nm
      • Noise Floor: <0.2 nm
      • Drift: <0.05 nm/sec
  • xProbe
    • Berkovich Probe: Load <1mN; Displacement <500nm
    • Cube Corner Probe: Load <1mN; Displacement <500nm
    • Imaging only Probe
    • Load Noise Floor: <2nN
    • Displacement Noise Floor: <0.020nm
    • Displacement Resolution: <0.006nm
  • High Load Transducers
    • Load < 12N; Displacement < 97um
  • Probes
    • Berkovitch standard probe for normal indentation
    • Berkovitch fluid cell probe
    • Berkovich Pulsar-Ceramic probe (ECR only)
    • Berkovitch, High Temp, xSol probe
    • HL-Berkovich Probe
    • HL-Conical Probe (50um 60°)
    • Cube corner probes for sharp indents
    • Conical probes (50um 90°)(5um 60°)(1um 90°)
  • Stage Specifications
    • X and Y stages
      • Travel: 250 mm × 150 mm
      • Positioning Resolution: 500 nm
  • Heating Stage xSol 600
    • Temperature: <600°
  • Piezoelectric Anti-Vibration System
    • Actively dampens vibrations under 200 Hz
    • Passively dampens those over 200Hz
  • Optic Specifications
    • Normal field of view
      • Max: 625 μm × 550 μm
      • Min: 28 μm × 22 μm
    • Magnification
      • Optical: 20X
      • Digital Zoom: 0.5X–11X
      • Effective: 10X–220X

References and Publications

  1. Dental Malformations Associated with Biallelic MMP20 Mutations, S-K. Wang, H. Zhang, M.B. Chavez, Y. Hu, F. Seymen, M. Koruyucu, Y. Kasimoglu, C.D. Colvin, T.N. Kolli, M.H. Tan, Y-L. Wang, P-Y. Lu, J-W. Kim, B.L. Foster, J.D. Bartlett, J.P. Simmer, J.C.-C. Hu, Molecular Genetics & Genomic Medicine, 2020
  2. Dislocation Loop Evolution and Radiation Hardening in Nickel-Based Concentrated Solid Solution Alloys, P. Xiu, Y.N. Osetsky, L. Jiang, G. Velisa, Y. Tong, H. Bei, W.J. Weber, Y. Zhang, L. Wang, Journal of Nuclear Materials, 538, 152247, 2020
  3. Evolution of Microstructure and Nanohardness of SiC Fiber-Reinforced SiC Matrix Composites under Au Ion Irradiation, C. Ye, J. Xue, T. Liu, R. Shu, Y. Yan, Y. Liao, Q. Ren, G. Ren, K. Sun, L. Jiang, P. Xiu, L. Wang, Ceramics International, 46(6), 8165-8173, 2020
  4. Faceted He-Filled “Pancakes” Confined within Nanoscale Metal Layers, B.K. Derby, J.K. Baldwin, D. Chen, M.J. Demkowicz, Y.Q. Wang, A. Misra, N. Li, JOM, 1-5, 2019
  5. Nanoscale Deformation Mechanics Reveal Resilience in Nacre of Pinna Nobilis Shell, J. Gim, N. Schnitzer, L.M. Otter, Y. Cui, S. Motreuil, F. Marin, S.E. Wolf, D.E. Jacob, A. Misra, R. Hovden, Nature Communications, 10, 4822, 2019
  6. Design of Bicontinuous Metallic Nanocomposites for High-Strength and Plasticity, Y. Cui, B. Derby, N. Li, A. Misra, Materials Design, 166, 107602, 2019
  7. Micropatterned Scaffolds with Immobilized Growth Factor Genes Regenerate Bone and Periodontal Ligament-Like Tissues, S.P. Pilichuk, T. Fretwurst, N. Yu, L. Larsson, N.M. Kavanagh, F. Asa’ad, K.C.K. Cheng, J. Lahann, W.V. Giannobile, Advanced Healthcare Materials, 7(22), 1800750, 2018
  8. Suppression of Shear Banding in High-Strength Cu/Mo Nanocomposites with Hierarchical Bicontinuous Intertwined Structures, Y. Cui, B. Derby, N. Li, N.A. Mara, A. Misra, Materials Research Letters, 6(3), 184-190, 2018
  9. Mechanical Properties of Individual Phases of ZrB2-ZrC Eutectic Composite Measured by Nanoindentation, E.J. Cheng,Y. Li, J. Sakamoto, S. Han, H. Sun, J. Noble, H. Katsui, T. Goto, Journal of the European Ceramic Society, 37(13), 4223-4227, 2017
  10. High Thermal Conductivity in Electrostatically Engineered Amorphous Polymers, A. Shanker, C. Li, G. Kim, D. Gidley, K.P. Pipe, J. Kim, Science Advances, 3(7), 1700342, 2017
  11. Enamel Ribbons, Surface Nodules, and Octacalcium Phosphate in C57BL/6 Amelx−/− Mice and Amelx+/ − Lyonization, Y. Hu, C. Smith, Z. Cai, L. Donnelly, J. Yang, J. Hu, J. Simmer, Molecular Genetics & Genomic Medicine, 4(6), 641-661, 2016