Veeco Dimension Icon Atomic Force Microscope

Applications

Materials Science, Biological Sciences, and Geological Sciences

Contact

Haiping Sun

Location

Room G020

Acknowledgments

Publications, presentations, and posters resulting from work on this instrument should state: “The authors acknowledge the financial support of the University of Michigan College of Engineering, and technical support from the Michigan Center for Materials Characterization.”

Specifications

  • Available Testing Modes
    • ScanAsyst
      • In Air/Fluid
    • Tapping: Amplitude “Set Point”
      • Soft Tapping: With Tip barely off the surface; default free air amplitude is 300mV
      • Standard: Default free air amplitude is 500mV
    • Contact: Deflection “Set Point”
      • In Air/Fluid: Fluid eliminates attractive forces and good for biological delicate samples
      • Lateral Force Microscopy (LFM): Surface frictional characteristics; use low spring constant probes (~0.01 -2 N/m)
    • Mechanical Properties
      • Force Volume: Map the interaction forces between a sample and the AFM tip; applications include elasticity, adhesion, electrostatic, magnetic and binding studies
      • Peak Force Quantitative Nanomechanical Mapping: Maps nano mechanical properties, such as modulus (1MPa to 50GPa), adhesion (10pN to 10uN)
    • Electrical and Magnetic
      • Electrical and Magnetic Lift Modes
        • MFM & EFM: Tapping mode interleave techniques; maps of local electrostatic or magneto static forces; phase lag detection; map of frequency to keep constant phase
        • Surface Potential (AM-KPFM): Tapping mode interleave techniques; constant height above surface while applying both an AC and a DC signal to the probe
        • DAFMCH holder with conductive tapping mode probes: SCM-PIT, MESP or DDESP
      • Piezoresponse Force Microscopy (PFM)
        • Optimized Vertical Domains: Imaging of response of a piezoelectric material with applied local AC electric field by the tip; polarization and orientation of domains can be mapped
        • DAFMCH holder with conductive tips (MESP-RC, SCM-PIT, MESP, DDESP, or OSCM-PT)
  • Scanner
    • Scanner range: 85 µm by 85 µm
    • Scanner rate: <9.77Hz
    • Tip velocity: <1912um/s
    • Sanning lines: <4096
    • Z Noise (Height Sensor): 0.014nm
    • Z Noise (Height): 0.02nm
    • X-Y Resolution: Heavily sample roughness and tip radius dependent
  • System
    • Vibration isolation system and environmental enclosure for high-resolution imaging
    • Noise Floor: <0.03nm RMS
    • Digital image acquisition of optical microscope images
  • Accessories
    • Standard DAFMCH holder with maximum Z range 600nm
    • Fluid Mode Holder (DTFM-DD)
  • Sample Requirements
    • The sample vacuum platen can take up to 200mm diameter samples.
    • The maximum Z scanning range is 9 µm. For better scanning quality, try to make the sample surface smooth and clean.
    • The maximum height of a sample is of the order of 12 mm.

Resources

References

  1. Plastic deformation induced microstructure transition in nano-fibrous Al-Si eutectics, H.H. Lien, J .Wang, A. Misra, Materials & Design, 218, 110701, 2022
  2. Quaternary Alloy ScAlGaN: A Promising Strategy to Improve the Quality of ScAlN, P. Wang, D. Wang, Y. Bi, B. Wang, J. Schwartz, R. Hovden, Z. Mi, Applied Physics Letters, 120, 012104, 2022
  3. Sub-100 nm High Spatial Frequency Periodic Structures Driven by Femtosecond Laser Induced Desorption in GaAs, A. Sarracino, A.R. Ansari, B. Torralva, S. Yalisove, Applied Physics Letters, 119, 019902, 2021
  4. Photoresist as a Choice of Molecularly Thin Gate Dielectrics in Graphene-Based Devices, M. Zhou, D. Zhang, H. Sun, Z. Liu, T. Chen, X. Wang, Z. Zhong, Y. Shi, APL Materials, 9, 031104, 2021
  5. Area-Selective Atomic Layer Deposition Patterned by Electrohydrodynamic Jet Printing for Additive Manufacturing of Functional Materials and Devices, T.H. Cho, N. Farjam, C.R. Allemang, C.P. Pannier, E. Kazyak, C. Huber, M. Rose, O. Trejo, R.L. Peterson, K. Barton, N.P. Dasgupta, ACS Nano, 14(12), 17262-17272, 2020
  6. Direct Measurements of Interfacial Adhesion in 2D materials and Van der Waals Heterostructures in Ambient Air, H. Rokni, W. Lu, Nature Communications, 11, 5607, 2020
  7. Morphological Design of Complex Oxides during Pulsed-Laser Deposition: The Role of Plasma-Plume Expansion, D. Del Gaudio, C.T. Boone, K. Sallans, E. Mason, A.J. Williamson, S. Yarlagadda, Y. Turkulets, J.T. Heron, I. Shalish, R.S. Goldman, Journal of Applied Physics, 126, 184301, 2019
  8. Diverse Nanoassemblies of Graphene Quantum Dots and Their Mineralogical Counterparts, N.A. Kotov, Z-b. Qu, W-J. Feng, Y. Wang, F. Romanenko, Angewandte Chemie, 58, 2-11, 2019 
  9. Exploring Wettability by Imaging the Adsorption of Crude Oil, Re-Dissolved Asphaltene, and Phenol Solutions onto Calcite: Implications to Sorption Mechanisms and Molecular Structure of Surface-Active Compounds in Crude Oil, Chemical Geology, M.C. Marcano, S. Kim, S.D. Taylor, U. Becker, 525, 462-478, 2019 
  10. Carbon-Assisted Catalyst Pretreatment Enables Straightforward Synthesis of High-Density Carbon Nanotube Forests, N.T. Dee, A.O. White, C. Jacob, W. Shi, P.R. Kidambi, K. Cui, D.N. Zakharov, N.Z. Janković, M. Bedewy, C.A.C. Chazot, J. Carpena-Núñez, B. Maruyama, E.A. Stach, D.L. Plata, A.J. Hart, Carbon, 153, 196-205, 2019
  11. Surface Morphology and Straight Crack Generation of Ultrafast Laser Irradiated β-Ga203, M. Ahn, A. Sarracino, A. Ansari, B. Torralva, S. Yalisove, J. Phillips, Journal of Applied Physics, 125(22), 223104, 2019
  12. Influence of Surface Nano-Patterning on the Placement of InAs Quantum Dots, D. Del Gaudio, L.K. Aagesen, S. Huang, T.M. Johnson, B.D. Faeth, H. Lu, R.M. Ziff, R.S. Goldman, Journal of Applied Physics, 124, 115307, 2018
  13. Work Function Modification via Combined Charge-Based Through-Space Interaction and Surface Interaction, D.S. Yang, D. Bilby, K. Chung, J.K. Wenderott, J. Jordahl, B.H. Kim, J. Lahann, P.F. Green, J. Kim, Advanced Materials Interfaces, 5(15), 1800471, 2018
  14. Nitric Oxide-Releasing Semi-Crystalline Thermoplastic Polymers: Preparation, Characterization and Application to Devise Anti-Inflammatory and Bactericidal Implants, X. Wang, A. Jolliffe, B. Carr, Q. Zhang, M. Bilger, Y. Cui, J. Wu, X. Wang, M. Mahoney, A. Rojas-Pena, M. Hoenerhoff, J. Douglas, R.H. Bartlett, C. Xi, J. Bull, M. Meyerhoff, Biomaterials Science, 6(12), 3189-3201, 2018
  15. Ultrasmall Paramagnetic Iron Oxide Nanoprobe Targeting Epidermal Growth Factor Receptor for In Vivo Magnetic Resonance Imaging of Hepatocellular Carcinoma, Y. Chen, Q. Zhou, X. Li, F. Wang, K. Heist, R. Kuick, S. Owens, T. Wang, Bioconjugate Chemistry, 28, 2794-2803, 2017
  16. Growth Kinetics in Layer-by-Layer Assemblies of Organic Nanoparticles and Polyelectrolytes, M. Mohammadi, A. Salehi, R. Branch, L. Cygan, C. Besirli, R. Larson, ChemPhysChem, 18(1), 128-141, 2017
  17. High Thermal Conductivity in Electrostatically Engineered Amorphous Polymers, A. Shanker, C. Li, G. Kim, D. Gidley, K.P. Pipe, J. Kim, Science Advances, 3(7), 1700342, 2017
  18. Bi-Enhanced N Incorporation in GaAsNBi Alloys, J. Occena, T. Jen, E.E. Rizzi, T.M. Johnson, J. Horwath, Y.Q. Wang, R.S. Goldman, Applied Physics Letters, 110(24), 242102, 2017
  19. Influence of Surface Reconstruction on Dopant Incorporation and Transport Properties of GaAs(Bi) alloys, R.L. Field III, J. Occena, T. Jen, D. Del Gaudio, B. Yarlagadda, C. Kurdak, R.S. Goldman, Applied Physics Letters, 109(25), 252105, 2016
  20. Nanoimprint-Assisted Shear Exfoliation Plus Transfer Printing for Producing Transition Metal Dichalcogenide Heterostructures, D. Li, S. Wi, M. Chen, B. Ryu, X. Liang, Journal of Vacuum Science & Technology, 34(6), 06KA01, 2016