JEOL 2100 probe-corrected analytical electron microscope

Applications

  • Atomic structure
  • Atomic chemical mapping
  • In-situ imaging (deformation, gas, liquid, temperature)

Contact

Kai Sun
Location: Room G032 
Live webcam
Phone: +1 (734) 764-2938 

Acknowledgments

Publications, presentations, posters resulting from work on this instrument should state: “The authors acknowledge the financial support of the University of Michigan College of Engineering and NSF grant #DMR-0723032, and technical support from the Michigan Center for Materials Characterization“.

Specifications

  • Accelerating Voltage: 100 and 200 kV
  •  Filament: Zirconated Tungsten (100) thermal field emission tip
  • Vacuum
    • Gun ~1.0 x 10-9 torr
    • Column ~1.0 x 10-7 torr
  • Resolution
    • CTEM 0.10 nm lattice / 0.0.19 nm point-to-point
    • STEM 0.10 nm Cs-Corrected HAADF (high angle annular dark field)
  • XEDS System
    • Horizontal Ultra-thin Window Si-Li X-ray detector (active area = 30 mm2) capable of detecting elements with Z >5.
    • EDAX r-TEM Detector with EDAX acquisition software
  • EELS System
    • Gatan #863 Tridiem Imaging Filter (GIF) for electron energy loss spectroscopy and imaging.
  • Image Acquisition & Analysis System
    • Gatan Ultrascan 1000 CCD TV camera for high resolution imaging (above the GIF)
  • Compatible sample Holders
    • JEOL Single-Tilt Stage
    • JEOL Double-Tilt Analytical Stage
    • Gatan #646 Double-Tilt (x=±35 degrees, y=±35 degrees) Low Background (Be) Stage with Faraday cup.
    • Gatan #636 Double-Tilt (x=±35 degrees, y=±35 degrees) Low Background (Be) Liquid-Nitrogen Stage.
    • Gatan #652 Double-Tilt Heating Holder with a maximum operating temperature of 1000 degrees Celsius.
  • Other Accessories
    • Free lens control, fully independent control of all lenses.
    • TEMCon PC control software.

References and Publications

  1. The effect of cold rolling on grain boundary structure and stress corrosion cracking susceptibility of twins in alloy 690 in simulated PWR primary water environment, Kuang, W., G.S. Was, C. Miller, M. Kaufman, T. Alam, B. Gwalani, and R. Banerjee, Corrosion science, 130, 126-137, 2018
  2. Multi-Building Block Janus Synthesized by seed-mediated self-assembly for enhanced photothermal effects and colored Brownian motion in an optical trap, K. Sansanaphongpricha, M.C. DeSantis, H.W. Chen, W. Cheng, K. Sun, B. Wen, and D.X. Sun, Small, 13(6), 1602569, 2017
  3. 1.3 μ m Optical Interconnect on Silicon: A Monolithic III-Nitride Nanowire Photonic Integrated Circuit, Hazari, Arnab, Fu Chen Hsiao, Lifan Yan, Junseok Heo, Joanna Mirecki Millunchick, John M. Dallesasse, and Pallab Bhattacharya, IEEE Journal of Quantum Electronics, 53(4), p1-9, 2017
  4. Shape Evolution of Highly Lattice-Mismatched InN/InGaN Nanowire Heterostructures, Yan, Lifan, Arnab Hazari, Pallab Bhattacharya, and Joanna M. Millunchick., Journal of Electronic Materials, 47(2), 966-972, 2017
  5. Structural differences between capped GaSb nanostructures grown by Stranski-Krastanov and droplet epitaxy growth modes, Matt DeJarld, Lifan Yan, Marta Luengo-Kovac, Vanessa Sih, and Joanna Millunchick, Journal of Applied Physics, 121(3), 34301, 2017
  6. Droplet induced compositional inhomogeneities in GaAsBi, C. Ryan Tait, Lifan Yan, and Joanna M. Millunchick, Applied Physics Letters, 111(4), 42105, 2017
  7. Enhanced photocatalytic hydrogen generation of nano-sized mesoporous InNbO4 crystals synthesized via a polyacrylamide gel route, M. Zhou, X.T. Zu, K. Sun, W. Liu, and X. Xiang, Chemical Engineering Journal, 313, 99-108, 2017
  8. Characterization of M2X formed during 5 MeV Fe2+ Irradiation, E. Getto, K. Sun, and G. Was, Journal of Nuclear Materials, 485, 154-158, 2017
  9. The effect of injected interstitials on void formation in self- ion irradiated nickel containing concentrated solid solution alloys, Tai-ni, Yang, Chenyang Lu, Ke Jin, Yanwen Zhang, Hongbin Bei and Lumin Wang, Journal of Nuclear Materials, 488, 328-337, 2017
  10. The Co-evolution of Microstructure Features in Self-Ion Irradiated HT9 at Very High Damage Levels, E. Getto, G. Vancoevering, G.S. Was, Journal of Nuclear Materials, 484, 193-208, 2017
  11. The oxidation of alloy 690 in simulated pressurized water reactor primary water, Kuang, W., M. Song, P. Wang, and G.S. Was, Corrosion science, 126, 227-237, 2017
  12. Direct observation of hydrogenation and dehydrogenation of a zirconium alloy, H.H. Shen, X.T. Zu, B. Chen, C.Q. Huang and K. Sun, Journal of Alloys and Compounds, 659, 23-30, 2016
  13. Tuning ionic transport in memristive devices by graphene with engineered nanopores, J. Lee, C. Du, K. Sun, E.M. Kioupakis, W.D. Lu, ACS Nano, 10(3), 3571-3579, 2016
  14. Pd-W alloy electrocatalysts and their catalytic property for oxygen reduction, Y. Dai, P. Yu, Q. Huang, and K. Sun, Fuel Cells, 16(2), 165-169, 2016
  15. Enhanced emission from single isolated gold quantum dots investigated using two-photon-excited fluorescence near-field scanning optical microscopy, N. Abeyasinghe, S. Kumar, K. Sun, J. F. Mansfield, R. Jin, and T. Goodson III, Journal of American Chemical Society, 138(50), 16299-16307, 2016
  16. Kinetic Trapping of Immisicible Metal Atoms into Bimetallic Nanoparticles through Plasmonic Visible Light-Mediated Reduction of a Bimetallic Oxide Precursor: Case Study of Ag-Pt Nanoparticle Synthesis U. Aslam, S. Linic Chemistry of Materials 28(22) 8289-8295 2016
  17. Methodology for determining void swelling at very high damage under ion irradiation, E. Getto, K. Sun, S. Taller, A.M. Monterrosa, Z. Jiao, G.S. Was, Journal of Nuclear Materials, 477, 273-279, 2016
  18. Void swelling and microstructure evolution at very high damage level in self-ion irradiated ferritic-martensitic steels, E. Getto, K. Sun, A.M. Monterrosa, Z. Jiao, M.J. Hackett, G.S. Was, Journal of Nuclear Materials, 480, 159-176, 2016
  19. Void Swelling and Microstructure Evolution at Very High Damage Levels in Self-Ion Irradiated Ferritic-Martensitic Steels, [3]    E. Getto, K. Sun, A.M. Monterrosa, Z. Jiao, M.J. Hackett, G.S. Was,, Journal of Nuclear Materials, 480, 159-176, 2016
  20. An InN/InGaN/GaN nanowire array guided wave photodiode on silicon,  Arnab Hazari, Md. Zunaid Baten, Lifan Yan, Joanna M. Millunchick, and Pallab Bhattacharya, Applied Physics Letters, 109(19), 191102, 2016
  21. Methodology for Determining Void Swelling at Very High Damage under Ion Irradiation, E. Getto, K. Sun, S. Taller, A.M. Monterrosa, Z. Jiao, G.S. Was,, Journal of Nuclear Materials, 477, 273-279, 2016
  22. On the early stages of precipitation in dilute Mg-Nd alloys, AR Natarajan, E Solomon, B. Puchala, EA Marquis, A Van der Ven, Acta Materialia (2016)
  23. Towards an understanding of tensile deformation in Ti-based bulk metallic glass matrix composites with BCC dendrites, J Kolodziejska, H Kozachkov, K Kranjc, A Hunter, EA Marquis, K Flores, W Johnson, and D Hofmann, Scientific Reports (2016)
  24. Ma, J. Carneiro, X. K. Gu, H. Qin, H. L. Xin, K. Sun, and E. Nikolla, Engineering complex, layered metal oxides: High performance nickelate nanostructures for surface oxygen exchange and reduction, ACS Catalysis 5, 4013-4019 (2015).
  25. A. Stoica, L. Endicott, H.H. Shen, W. Liu, K. Sun, C. Uher, and R. Clarke, High-quality II-VI films grown on amorphous substrates using tunable tetradymite templates, Applied Physics Letters 105 (22)  221606 (2014).
  26. W. Li, V.A. Stoica, K. Sun, W. Liu, L. Endicott, J. Walrath, Y.H. Lin, K.P. Pipe, R. Goldman, C. Uher, and R. Clarke, Ordered horizontal Sb2Te3 nanowires induced by femtosecond lasers, Applied Physics Letters 105 (20) 201904 (2014).
  27. S. Huang, S.J. Kim, X.Q. Pan, and R.S. Goldman, “Origins of interlayer formation and misfit dislocation displacement in the vicinity of InAs/GaAs quantum dots”, Appl. Phys. Lett. 105, 032107 (2014).
  28. D.Q. McNerny, B. Viswanath, D. Copic, F.R. Laye, C. Prohoda, A.C. Brieland-Shoultz, E.S. Polsen, N.T. Dee, V.S. Veerasamy, A.J. Hart. Direct fabrication of graphene on SiO2 enabled by thin film stress engineering. Scientific Reports 4 (2014) 5049.
  29.